jib crane calculations

jib crane calculations are essential for the design, safety, and efficiency of jib cranes used in various industrial applications. These calculations involve determining load capacities, structural stresses, and mechanical forces to ensure the crane operates within safe limits. Proper jib crane calculations help prevent structural failures, optimize material use, and comply with safety standards. This article covers the fundamental principles of jib crane calculations, including load analysis, stress evaluation, and factors affecting crane performance. Additionally, it explores the methodologies for calculating moments, shear forces, and deflections, providing a comprehensive understanding for engineers and designers. The subsequent sections detail the key components and processes involved in jib crane calculations, offering practical insights and technical guidance.

- Understanding Load Types in Jib Crane Calculations
- Structural Analysis and Stress Calculations
- Determining Moment and Shear Forces
- Calculating Deflections and Stability
- Safety Factors and Design Considerations

Understanding Load Types in Jib Crane Calculations

Accurate jib crane calculations begin with understanding the different types of loads that the crane will experience during operation. Loads can be categorized primarily into static loads, dynamic loads, and environmental loads. Static loads include the weight of the load being lifted and the crane's own structural components. Dynamic loads arise from the movement of the crane, such as acceleration, deceleration, and impact forces during lifting or lowering. Environmental loads encompass factors like wind pressure, seismic activity, and temperature variations that can influence crane performance.

Static Loads

Static loads are the constant forces acting on the jib crane when it is holding or supporting a load without movement. This includes the weight of the load, the jib arm, the column, and any attachments such as the hoist. For jib crane calculations, it is crucial to consider the maximum rated load plus the weight of the crane components to determine the total static load.

Dynamic Loads

Dynamic loads arise from the operational movement of the crane. When the crane moves or the load is lifted or lowered, additional forces occur due to acceleration, deceleration, and potential impact. These loads can significantly increase the stress on the crane structure and must be factored into the calculations using appropriate dynamic load factors.

Environmental Loads

Environmental influences such as wind loads and seismic forces affect the jib crane's stability and structural integrity. Wind loads can exert lateral forces on the jib arm and column, while seismic activity may induce vibrations and additional stresses. These factors vary depending on the installation site and local codes and standards, and they must be incorporated into the jib crane calculations for safe design.

Structural Analysis and Stress Calculations

Structural analysis is a critical step in jib crane calculations that involves evaluating stresses and strains within the crane components under various load conditions. This ensures that the materials and design can withstand operational forces without failure. Stress calculations typically focus on axial, bending, and shear stresses.

Axial Stress

Axial stress in jib crane calculations refers to the force acting along the length of a structural member, such as the vertical column. It is calculated by dividing the axial load by the cross-sectional area of the member. Proper assessment of axial stress is important to prevent buckling or crushing failures.

Bending Stress

Bending stress occurs due to moments generated by the load applied at a distance from the support or pivot point. In jib cranes, the jib arm experiences bending stress as it supports the load at its end. The bending stress is calculated using the bending moment and the section modulus of the arm's cross-section.

Shear Stress

Shear stress results from forces acting parallel to the cross-section of the structural members. It is especially significant at connections and joints in jib cranes. Calculations must ensure that shear stresses remain below allowable limits to avoid material failure.

Determining Moment and Shear Forces

Moments and shear forces are fundamental to jib crane calculations as they directly influence the design and safety of the crane structure. Understanding how to calculate these forces allows engineers to select appropriate materials and dimensions for crane components.

Calculating Bending Moments

The bending moment at any point in the jib crane is the product of the load and the distance from the point to the load application. For a jib crane, the maximum bending moment typically occurs at the fixed support of the jib arm. Accurate calculation of this moment is vital for designing the arm and support column to resist bending.

Shear Force Calculation

Shear force in jib crane calculations is determined by summing the vertical forces acting on the structure. At the support, the shear force equals the total vertical load applied by the load and the crane components. This force impacts the selection of welding, bolts, and other fasteners at critical joints.

Load Distribution Considerations

Load distribution along the jib arm varies depending on the load position and type. Uniformly distributed loads and point loads create different shear force and moment profiles. Jib crane calculations must consider these variations for accurate structural analysis.

Calculating Deflections and Stability

Deflection and stability assessments are crucial to ensure the jib crane functions properly without excessive deformation or risk of tipping. Excessive deflection can lead to operational problems and even structural damage, while stability calculations prevent overturning under load.

Deflection Calculations

Deflection refers to the displacement of the jib arm or column under load. It is calculated using beam deflection formulas that incorporate the load magnitude, beam length, material modulus of elasticity, and moment of inertia. Limiting deflection to acceptable levels is part of jib crane calculations to maintain operational accuracy and safety.

Stability Analysis

Stability analysis involves evaluating the jib crane's resistance to tipping

or overturning due to applied loads and external forces. This includes calculating the overturning moment and comparing it to the resisting moment provided by the crane's base and counterweights. Proper stability ensures safe operation throughout the crane's range of motion.

Factors Affecting Stability

- Base design and anchorage
- Load positioning and weight
- Wind and seismic forces
- Operational dynamics and sudden movements

Safety Factors and Design Considerations

Integrating safety factors into jib crane calculations is mandatory to accommodate uncertainties in loads, material properties, and operating conditions. Safety factors ensure that the crane design remains robust under unexpected stresses and prolongs service life.

Safety Factor Determination

Safety factors are applied by multiplying the calculated loads or stresses by a predetermined coefficient greater than one. These factors vary depending on industry standards, material reliability, and the criticality of the application. Typical safety factors for jib crane calculations range from 1.25 to 2.0.

Material Selection and Quality

Design considerations include selecting materials with adequate strength, ductility, and fatigue resistance. Material properties influence the allowable stresses and deflections used in calculations, affecting overall crane performance and safety.

Compliance with Standards

Jib crane calculations must align with relevant codes and standards such as OSHA, ANSI, and ASME requirements. These standards provide guidelines on load ratings, testing, and inspection to ensure cranes are safe for use in various environments.

Maintenance and Inspection Planning

Regular maintenance and inspection schedules are part of the design considerations. Proper upkeep ensures that the crane maintains its structural integrity and operational safety, minimizing risks associated with wear and environmental exposure.

Frequently Asked Questions

What are the key factors to consider in jib crane calculations?

Key factors include load capacity, crane radius, arm length, lifting height, structural strength, material properties, and safety factors. Accurate assessment of these ensures safe and efficient crane operation.

How do you calculate the maximum load capacity of a jib crane?

The maximum load capacity is calculated by considering the crane's structural strength, arm length, and material limits. It involves applying the bending moment formula (Moment = Load × Distance) and ensuring stresses do not exceed allowable limits.

What is the importance of calculating the bending moment in jib crane design?

Calculating the bending moment is crucial as it helps determine the stresses the jib crane arm will experience under load. This ensures the arm can sustain loads without failure or excessive deflection.

How do you determine the safe working load (SWL) for a jib crane?

SWL is determined by dividing the crane's maximum load capacity by a safety factor, which accounts for uncertainties in load estimations, material behavior, and operational conditions. This ensures safe usage under realworld scenarios.

What role does the arm length play in jib crane calculations?

Arm length directly affects the bending moment and stress on the crane arm. Longer arms increase leverage, resulting in higher bending moments and requiring stronger materials or designs to maintain safety.

How is the foundation load calculated for a jib crane installation?

Foundation load is calculated by summing vertical loads from the crane and the maximum load, plus horizontal forces due to crane operation. These loads are then used to design a foundation capable of safely supporting the crane.

What safety factors are typically used in jib crane calculations?

Safety factors for jib cranes typically range from 1.5 to 3, depending on standards and application. These factors account for uncertainties in material strength, load estimations, and operational conditions to ensure reliability and safety.

Additional Resources

- 1. Jib Crane Design and Analysis: Principles and Applications
 This book provides a comprehensive guide to the fundamental principles of jib crane design and analysis. It covers structural components, load calculations, and safety factors. Engineers and designers will find detailed methodologies for ensuring optimal performance and reliability in crane systems.
- 2. Structural Calculations for Jib Cranes
 Focused on the mathematical and engineering calculations necessary for jib
 crane design, this book offers step-by-step procedures for load assessment,
 stress analysis, and stability evaluation. It includes practical examples and
 case studies to help readers apply theoretical concepts to real-world
 scenarios.
- 3. Load Dynamics and Safety in Jib Crane Operations
 This title explores the dynamic forces acting on jib cranes during operation and their implications for safety and structural integrity. Readers will learn about load impact, fatigue analysis, and methods to mitigate risks. The book is essential for professionals aiming to enhance crane safety standards.
- 4. Materials and Structural Components of Jib Cranes
 An in-depth examination of the materials used in jib crane construction, this book discusses selection criteria based on strength, durability, and environmental factors. It also analyzes the role of various structural components in overall crane performance and longevity.
- 5. Handbook of Jib Crane Calculations and Engineering Standards
 This practical handbook consolidates key engineering standards, formulas, and calculation techniques used in jib crane design. It serves as a quick reference for engineers needing accurate data for load ratings, deflection limits, and structural tolerances.

- 6. Finite Element Analysis in Jib Crane Design
 This book introduces the application of finite element methods to jib crane analysis, enabling precise modeling of stresses and deformations under complex loading conditions. It includes software guidance and comparative studies to validate design choices.
- 7. Maintenance and Inspection Calculations for Jib Cranes
 Focusing on maintenance engineering, this book outlines the calculations
 necessary to assess wear, fatigue, and potential failure points in jib
 cranes. It provides maintenance schedules and inspection protocols to prolong
 equipment life and ensure operational safety.
- 8. Dynamic Load Calculations and Control Systems for Jib Cranes
 Covering both the mechanical and control aspects, this title delves into
 dynamic load calculations and the integration of control systems to optimize
 jib crane performance. It highlights techniques for vibration reduction, load
 monitoring, and automated safety controls.
- 9. Practical Guide to Jib Crane Engineering and Load Calculations
 This guide offers practical insights for engineers and technicians involved
 in the design, installation, and operation of jib cranes. It combines
 theoretical concepts with hands-on calculation examples, making it a valuable
 resource for both beginners and experienced professionals.

Jib Crane Calculations

Find other PDF articles:

https://a.comtex-nj.com/wwu16/Book?docid=SRZ11-3601&title=solubility-curves-answer-key.pdf

Jib Crane Calculations: A Comprehensive Guide to Safe and Efficient Design

This ebook provides a detailed exploration of jib crane calculations, crucial for ensuring the safe and efficient operation of these vital lifting devices in various industries. Understanding these calculations is paramount for preventing accidents, optimizing crane performance, and complying with relevant safety regulations. Accurate calculations are essential for selecting appropriate components, ensuring structural integrity, and avoiding costly failures.

Ebook Title: Mastering Jib Crane Calculations: A Practical Guide for Engineers and Technicians

Contents:

Introduction: The Importance of Accurate Jib Crane Calculations and Overview of Key Concepts Chapter 1: Load Calculations and Determination of Forces: Analyzing different load types, calculating resultant forces, and considering dynamic effects.

Chapter 2: Structural Design and Material Selection: Determining appropriate materials, calculating member sizes, and ensuring adequate structural capacity.

Chapter 3: Jib Crane Mechanisms and Calculations: Analysis of hoisting mechanisms, slewing systems, and their impact on overall crane capacity.

Chapter 4: Stability and Foundation Design: Calculating required foundation size and type, ensuring crane stability under various load conditions.

Chapter 5: Safety Factors and Regulations: Incorporating safety margins, complying with relevant codes and standards (e.g., ASME, OSHA), and conducting risk assessments.

Chapter 6: Case Studies and Practical Examples: Illustrative examples demonstrating the application of jib crane calculation principles.

Chapter 7: Advanced Calculations and Software Tools: Introduction to advanced computational methods and software utilized in jib crane design.

Conclusion: Summarizing key concepts, highlighting best practices, and emphasizing the importance of ongoing maintenance and inspections.

Introduction: This section sets the stage by explaining the significance of accurate jib crane calculations in ensuring worker safety and operational efficiency. It will introduce basic terminology and concepts necessary for understanding the subsequent chapters.

Chapter 1: Load Calculations and Determination of Forces: This chapter focuses on the meticulous process of determining all acting forces on the jib crane, including static and dynamic loads, wind loads, and impact forces. It will cover methodologies for calculating resultant forces and their effects on the crane structure.

Chapter 2: Structural Design and Material Selection: This section delves into the selection of appropriate materials (steel, aluminum, etc.) based on strength, weight, and cost considerations. Calculations for determining the required cross-sectional areas of jib members, columns, and base plates are detailed. Fatigue analysis and stress concentration will also be discussed.

Chapter 3: Jib Crane Mechanisms and Calculations: Here, the focus shifts to the mechanical components of the jib crane, such as the hoisting mechanism (chain, wire rope), slewing mechanism (gears, bearings), and their impact on overall crane capacity and efficiency. Calculations related to gear ratios, torque, and power requirements will be examined.

Chapter 4: Stability and Foundation Design: This chapter emphasizes the importance of a stable foundation for safe operation. Calculations for determining the necessary foundation size, depth, and type (concrete, soil reinforcement) are explained, considering factors like soil properties and anticipated loads.

Chapter 5: Safety Factors and Regulations: This crucial section covers the application of safety factors to account for uncertainties and potential overloads. It provides an overview of relevant safety regulations and standards (e.g., ASME B30.11, OSHA regulations) that must be adhered to during the design and operation of jib cranes. Risk assessment methodologies are also included.

Chapter 6: Case Studies and Practical Examples: This chapter uses real-world examples to illustrate the application of the previously explained concepts and calculations. It provides step-by-step solutions to common jib crane design problems. The case studies cover various load scenarios and

crane configurations.

Chapter 7: Advanced Calculations and Software Tools: This section introduces advanced calculation techniques, including finite element analysis (FEA) and other computational methods used for complex jib crane designs. It also explores the use of specialized software packages that simplify and automate the calculation process.

Conclusion: This section summarizes the key takeaways from the ebook, reinforcing the importance of accurate calculations and regular inspections. It emphasizes the continuous evolution of best practices in jib crane design and operation.

Jib Crane Calculations: FAQs

- 1. What are the primary factors influencing jib crane load calculations? Primary factors include the weight of the lifted object, the crane's own weight, wind loads, and dynamic effects from acceleration and deceleration.
- 2. How do I determine the appropriate safety factor for a jib crane? Safety factors are determined based on relevant standards (ASME, OSHA) and consider the material properties, load variability, and desired level of risk reduction.
- 3. What materials are commonly used for jib crane construction? Steel is the most common due to its high strength-to-weight ratio, but aluminum alloys are sometimes used for lighter applications.
- 4. How do I calculate the required size of the jib crane's foundation? Foundation design involves considering soil bearing capacity, crane overturning moments, and potential settlement. Engineering software and soil analysis are crucial.
- 5. What are the common types of jib crane mechanisms? Common mechanisms include manual hand chain hoists, electric chain hoists, and air hoists. Slewing mechanisms can be manual or powered.
- 6. What are the key regulations governing jib crane design and operation? Relevant regulations vary by location but generally include OSHA regulations (US) or equivalent standards in other countries. ASME B30.11 is a widely accepted standard.
- 7. How can finite element analysis (FEA) improve jib crane design? FEA allows for detailed stress analysis of complex crane structures, identifying potential weak points and optimizing designs for maximum strength and minimum weight.
- 8. What are some common mistakes to avoid when performing jib crane calculations? Neglecting dynamic loads, using inappropriate safety factors, and overlooking environmental factors like wind are common mistakes.
- 9. What type of maintenance is necessary for a jib crane to ensure continued safe operation? Regular inspections, lubrication of moving parts, and load testing are essential for maintaining the safety and efficiency of the jib crane.

Related Articles:

- 1. Selecting the Right Jib Crane for Your Application: This article guides readers through the process of choosing a jib crane based on load capacity, reach, and operational requirements.
- 2. Jib Crane Maintenance and Inspection Procedures: This article details recommended maintenance schedules and inspection procedures to ensure continued safe operation.
- 3. Understanding Jib Crane Safety Regulations: This article provides a comprehensive overview of relevant safety regulations and standards.
- 4. Comparison of Different Jib Crane Designs: This article compares various jib crane designs, including cantilever, wall-mounted, and free-standing types.
- 5. Troubleshooting Common Jib Crane Problems: This article offers solutions to common problems encountered with jib cranes, such as malfunctions in the hoisting or slewing mechanisms.
- 6. The Importance of Proper Jib Crane Installation: This article discusses the critical aspects of proper jib crane installation, ensuring stability and safety.
- 7. Cost Analysis of Jib Crane Ownership: This article explores the various costs associated with owning and operating a jib crane, including initial purchase, maintenance, and repair expenses.
- 8. Advanced Techniques in Jib Crane Stress Analysis: This article provides a detailed examination of advanced stress analysis techniques, including FEA and other computational methods.
- 9. Future Trends in Jib Crane Technology: This article explores emerging trends in jib crane technology, such as the incorporation of advanced sensors and automation.

jib crane calculations: Machinery's Reference Series ..., 1908

jib crane calculations: <u>Calculations for A-level Physics</u> T. L. Lowe, J. F. Rounce, 2002 This guide has been revised to match the new specifications. It gives thorough expert explanations, worked examples and plenty of exam practice in physics calculations. It can be used as a course support book as well as exam practice.

jib crane calculations: *Materials Handling Handbook* Raymond A. Kulweic, 1991-01-16 Sponsored jointly by the American Society of Mechanical Engineers and International Material Management Society, this single source reference is designed to meet today's need for updated technical information on planning, installing and operating materials handling systems. It not only classifies and describes the standard types of materials handling equipment, but also analyzes the engineering specifications and compares the operating capabilities of each type. Over one hundred professionals in various areas of materials handling present efficient methods, procedures and systems that have significantly reduced both manufacturing and distribution costs.

jib crane calculations: Cranes, Their Construction, Mechanical Equipment and Working Anton Böttcher, 1908

jib crane calculations: Crane Handbook D. E. Dickie, 2013-10-22 Crane Handbook offers extensive advice on how to properly handle a crane. The handbook highlights various safety requirements and rules. The aim of the book is to improve the readers' crane operating skills, which could eventually make the book a standard working guide for training operators. The handbook first

reminds the readers that the machine should be carefully tested by a regulatory board before use. The text then notes that choosing the right crane for a particular job is vital and explains why this is the case. It then discusses how well-equipped and durable the crane should be. The next chapters talk about the crane's operating controls; each control is identified and explained. The book lists the requirements that the crane must meet, while the final chapters explore proper set-up, maintenance, and precautions. The text is a very helpful reference for crane operators, owners, and contractors and could be of interest to casual readers as well.

jib crane calculations: Machine Design with CAD and Optimization Sayed M. Metwalli, 2021-04-08 MACHINE DESIGN WITH CAD AND OPTIMIZATION A guide to the new CAD and optimization tools and skills to generate real design synthesis of machine elements and systems Machine Design with CAD and Optimization offers the basic tools to design or synthesize machine elements and assembly of prospective elements in systems or products. It contains the necessary knowledge base, computer aided design, and optimization tools to define appropriate geometry and material selection of machine elements. A comprehensive text for each element includes: a chart, excel sheet, a MATLAB® program, or an interactive program to calculate the element geometry to guide in the selection of the appropriate material. The book contains an introduction to machine design and includes several design factors for consideration. It also offers information on the traditional rigorous design of machine elements. In addition, the author reviews the real design synthesis approach and offers material about stresses and material failure due to applied loading during intended performance. This comprehensive resource also contains an introduction to computer aided design and optimization. This important book: Provides the tools to perform a new direct design synthesis rather than design by a process of repeated analysis Contains a guide to knowledge-based design using CAD tools, software, and optimum component design for the new direct design synthesis of machine elements Allows for the initial suitable design synthesis in a very short time Delivers information on the utility of CAD and Optimization Accompanied by an online companion site including presentation files Written for students of engineering design, mechanical engineering, and automotive design. Machine Design with CAD and Optimization contains the new CAD and Optimization tools and defines the skills needed to generate real design synthesis of machine elements and systems on solid ground for better products and systems.

jib crane calculations: Machinery, 1913

jib crane calculations: Manual Training Magazine , 1910

jib crane calculations: Manual Training Magazine Charles Alpheus Bennett, 1910

jib crane calculations: The Builder, 1903

jib crane calculations: Bulletin Detroit Public Library, 1910

jib crane calculations: Quarterly Bulletin Detroit Public Library, 1910

 $\,$ jib crane calculations: Henley's Encyclopaedia of Practical Engineering and Allied Trades ... , 1906

jib crane calculations: Henley's Encyclopædia of Practical Engineering and Allied Trades
Joseph Gregory Horner, 1906

jib crane calculations: Joint Volumes of Papers Presented to the Legislative Council and Legislative Assembly New South Wales. Parliament, 1920 Includes various departmental reports and reports of commissions. Cf. Gregory. Serial publications of foreign governments, 1815-1931.

jib crane calculations: *Machine Shop, Machine Repairs Formulas, Engineered Performance Standards, Public Works Maintenance* United States. Naval Facilities Engineering Command, 1966

jib crane calculations: The United States Catalog, 1909

jib crane calculations: <u>Electric Cranes: Their Design, Construction and Application</u> Harold Hodgkinson Broughton, 1911

jib crane calculations: Engineering Index Annual, 1908 Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological

forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.

jib crane calculations: Engineering Index , 1927

jib crane calculations: Mechanical Engineering for Beginners R. S. McLaren, 1920

jib crane calculations: Manual Training and Vocational Education Charles Alpheus Bennett, William Thomas Bawden, 1910

jib crane calculations: The Mechanical World, 1907

jib crane calculations: Applied Mechanics Reviews, 1974

jib crane calculations: Machinery's Data Sheet Series, 1910

jib crane calculations: The Draughtsman, 1924

jib crane calculations: Engineering Mechanics R. C. Hibbeler, 2010 Companion CD contains 8 animations covering fundamental engineering mechanics concept

jib crane calculations: Locomotive Engineering, 1907

jib crane calculations: Railway and Locomotive Engineering, 1906

jib crane calculations: Boiler Maker, 1924

jib crane calculations: The New South Wales Industrial Gazette, 1920

jib crane calculations: The New South Wales Industrial Gazette New South Wales. Dept. of Labour and Industry and Social Services, 1920

jib crane calculations: *Journal of the Western Society of Engineers* Western Society of Engineers (Chicago, Ill.), 1912

jib crane calculations: Applied Mechanics (Engineering Mechanics) R.K.Dhawan, 2011 For the students of Polytechnic Diploma Courses in Engineering & Technology. Numerous solved problems, questions for self examination and problems for practice are given in each chapter. Includes eight Laboratory Experiments.

jib crane calculations: Safety at Work John Ridley, John Channing, 2008-01-14 Safety at Work is widely accepted as the most authoritative guide to safety and health in the workplace. Its comprehensive coverage and academically rigorous approach make it essential reading for students on occupational safety and health courses at diploma, bachelor and master level, including the NEBOSH National Diploma. Health and safety professionals turn to it for detailed coverage of the fundamentals and background of the field. The seventh edition has been revised to cover recent changes in UK legislation and practice, including: Construction (Design & Management) Regulations 2007 Regulatory Reform (Fire Safety) Order 2005 Work at Height Regulations 2005 Control of Noise at Work Regulations 2005 Control of Vibration at Work Regulations 2005 Waste regulations 2005, 2006 ISO 12100 Safety of Machinery - Basic concepts and general principles

jib crane calculations: The Annual American Catalog, 1900-1909, 1909

jib crane calculations: Transactions of the American Institute of Electrical Engineers American Institute of Electrical Engineers, 1922 List of members in v. 7-15, 17, 19-20.

Figure 1 From the State of the Sth International Conference on Industrial Engineering Andrey A. Radionov, Vadim R. Gasiyarov, 2023-08-28 This book highlights recent findings in industrial, manufacturing and mechanical engineering and provides an overview of the state of the art in these fields, mainly in Russia and Eastern Europe. A broad range of topics and issues in modern engineering is discussed, including the machinery and mechanism design, dynamics of machines and working processes, friction, wear and lubrication in machines, design and manufacturing engineering of industrial facilities, transport and technological machines, mechanical treatment of materials, industrial hydraulic systems. This book gathers selected papers presented at the 9th International Conference on Industrial Engineering (ICIE), held in Sochi, Russia, in May 2023. The authors are experts in various fields of engineering, and all papers have been carefully reviewed. Given its scope, this book will be of interest to a wide readership, including mechanical

and production engineers, lecturers in engineering disciplines, and engineering graduates.

jib crane calculations: The History of the Theory of Structures Karl-Eugen Kurrer, 2018-07-23 Zehn Jahre nach der 1. Auflage in englischer Sprache legt der Autor sein Buch The History of the Theory of Structures in wesentlich erweiterter Form vor, nunmehr mit dem Untertitel Searching for Equilibrium. Mit dem vorliegenden Buch lädt der Verfasser seine Leser zur Suche nach dem Gleichgewicht von Tragwerken auf Zeitreisen ein. Die Zeitreisen setzen mit der Entstehung der Statik und Festigkeitslehre eines Leonardo und Galilei ein und erreichen ihren ersten Höhepunkt mit den baustatischen Theorien über den Balken, Erddruck und das Gewölbe von Coulomb am Ende des 18. Jahrhunderts. Im folgenden Jahrhundert formiert sich die Baustatik mit Navier, Culmann, Maxwell, Rankine, Mohr, Castigliano und Müller-Breslau zu einer technikwissenschaftlichen Grundlagendisziplin, die im 20. Jahrhundert in Gestalt der modernen Strukturmechanik bei der Herausbildung der konstruktiven Sprache des Stahl-, Stahlbeton-, Flugzeug-, Automobil- und des Schiffbaus eine tragende Rolle spielt. Dabei setzt der Autor den inhaltlichen Schwerpunkt auf die Formierung und Entwicklung moderner numerischer Ingenieurmethoden wie der Finite-Elemente-Methode und beschreibt ihre disziplinäre Integration in der Computational Mechanics. Kurze, durch historische Skizzen unterstützte Einblicke in gängige Berechnungsverfahren erleichtern den Zugang zur Geschichte der Strukturmechanik und Erddrucktheorie vom heutigen Stand der Ingenieurpraxis und stellen einen auch einen wichtigen Beitrag zur Ingenieurpädagogik dar. Dem Autor gelingt es, die Unterschiedlichkeit der Akteure hinsichtlich ihres technisch-wissenschaftlichen Profils und ihrer Persönlichkeit plastisch zu schildern und das Verständnis für den gesellschaftlichen Kontext zu erzeugen. So werden in 260 Kurzbiografien die subjektive Dimension der Baustatik und der Strukturmechanik von der frühen Neuzeit bis heute entfaltet. Dabei werden die wesentlichen Beiträge der Protagonisten der Baustatik besprochen und in die nachfolgende Bibliografie integriert. Berücksichtigt wurden nicht nur Bauingenieure und Architekten, sondern auch Mathematiker, Physiker, Maschinenbauer sowie Flugzeug- und Schiffbauer. Neben den bekannten Persönlichkeiten der Baustatik, wie Coulomb, Culmann, Maxwell, Mohr, Müller-Breslau, Navier, Rankine, Saint-Venant, Timoshenko und Westergaard, wurden u. a. auch G. Green, A. N. Krylov, G. Li, A. J. S. Pippard, W. Prager, H. A. Schade, A. W. Skempton, C. A. Truesdell, J. A. L. Waddell und H. Wagner berücksichtigt. Den Wegbereitern der Moderne in der Baustatik J. H. Argyris, R. W. Clough, Th. v. Kármán, M. J. Turner und O. C. Zienkiewicz wurden umfangreiche Biografien gewidmet. Eine ca. 4500 Titel umfassende Bibliografie rundet das Werk ab. Neue Inhalte der 2. Auflage sind: Erddrucktheorie, Traglastverfahren, historische Lehrbuchanalyse, Stahlbrückenbau, Leichtbau, Platten- und Schalentheorie, Greensche Funktion, Computerstatik, FEM, Computergestützte Graphostatik und Historische Technikwissenschaft. Gegenüber der 1., englischen Ausgabe wurde der Seitenumfang um 50 % auf nunmehr etwas über 1200 Druckseiten gesteigert. Das vorliegende Buch ist die erste zusammenfassende historische Gesamtdarstellung der Baustatik vom 16. Jahrhundert bis heute. Über die Reihe edition Bautechnikgeschichte: Mit erstaunlicher Dynamik hat sich die Bautechnikgeschichte in den vergangenen Jahrzehnten zu einer höchst lebendigen, international vernetzten und viel beachteten eigenständigen Disziplin entwickelt. Auch wenn die nationalen Forschungszugänge unterschiedliche Akzente setzen, eint sie doch das Bewusstsein, dass gerade die inhaltliche und methodische Vielfalt und das damit verbundene synthetische Potenzial die Stärke des neuen Forschungsfeldes ausmachen. Bautechnikgeschichte erschließt neue Formen des Verstehens von Bauen zwischen Ingenieurwesen und Architektur, zwischen Bau- und Kunst-, Technik- und Wissenschaftsgeschichte. Mit der edition Bautechnikgeschichte erhält die neue Disziplin erstmals einen Ort für die Publikation wichtiger Arbeiten auf angemessenem Niveau in hochwertiger Gestaltung. Die Bücher erscheinen in deutscher oder englischer Sprache. Beide Hauptrichtungen der Bautechnikgeschichte, der eher konstruktionsgeschichtlich und der eher theoriegeschichtlich geleitete Zugang, finden Berücksichtigung; das Spektrum der Bände reicht von Überblickswerken über Monographien zu Einzelaspekten oder -bauten bis hin zu Biographien bedeutender Ingenieurpersönlichkeiten. Ein international besetzter Wissenschaftlicher Beirat unterstützt die

Herausgeber in der Umsetzung des Konzepts.

jib crane calculations: The Annual American Catalog, 1908, 1909

Back to Home: https://a.comtex-nj.com