magnetek universal electric motor cross reference

magnetek universal electric motor cross reference is a critical tool for anyone involved in motor repair, replacement, or system design. Understanding how to effectively utilize this information ensures operational continuity, minimizes downtime, and facilitates cost-effective solutions. This comprehensive guide will delve into the intricacies of the Magnetek universal electric motor cross reference, exploring its importance, how to navigate it, common substitution scenarios, and best practices for selecting the right replacement motor. We will cover the essential factors to consider, from electrical specifications to physical dimensions, and discuss the benefits of having a reliable cross-reference system at your disposal.

Understanding the Importance of Magnetek Universal Electric Motor Cross Reference

The Magnetek universal electric motor cross reference is an indispensable resource for technicians, engineers, and procurement specialists. It bridges the gap between obsolete or discontinued Magnetek motor part numbers and their currently available or suitable alternatives. Without such a reference, sourcing replacements for aging equipment or motors with specific, hard-to-find characteristics would be a significant challenge, leading to prolonged downtime and increased repair costs. The availability of a robust cross-reference system streamlines the replacement process, ensuring that the correct motor with compatible specifications is identified quickly and efficiently.

Magnetek has been a significant player in the electric motor industry, providing a wide range of motors for various applications. As technology evolves and product lines are updated, older motor models may be phased out. The universal electric motor cross reference serves as a vital bridge, allowing users to find modern equivalents that maintain or even improve upon the performance of the original motor. This is particularly important in industrial settings where machinery often has a long operational life, and original parts may no longer be manufactured. The ability to cross-reference ensures that critical operations can resume with minimal disruption.

Navigating the Magnetek Universal Electric Motor Cross Reference System

Effectively using the Magnetek universal electric motor cross reference requires a systematic approach, focusing on key motor parameters. The core of this navigation involves matching essential electrical and mechanical specifications from the old motor to potential replacements. This process is not merely about finding a motor with the same part number but understanding the underlying performance characteristics that define its suitability for a given application. Accurate identification of the original motor's specifications is the foundational step towards a successful cross-reference.

Key Motor Specifications for Cross-Referencing

Several critical specifications must be meticulously considered when using a Magnetek universal electric motor cross reference. These parameters dictate the motor's performance and its compatibility within a system. Neglecting any of these can lead to operational issues, premature failure, or damage to connected equipment. Therefore, a thorough understanding and accurate recording of these details are paramount.

- **Horsepower (HP):** The power output of the motor is a primary factor. It must be equal to or greater than the original motor's horsepower to ensure sufficient torque and performance.
- **Voltage (V):** The operating voltage must match the power supply available at the installation site. Motors are designed for specific voltage ratings, and using an incorrect voltage can lead to damage or inefficient operation.
- **Amperage (A):** The current draw of the motor is crucial for circuit protection and power supply capacity. The replacement motor's amperage should be closely matched or considered in relation to the circuit breaker or fuse rating.
- **RPM** (**Revolutions Per Minute**): The speed at which the motor operates directly affects the driven equipment. While some variation might be acceptable, significant differences can alter the performance of the application.
- **Frame Size:** This refers to the physical dimensions of the motor, including mounting bolt patterns and shaft diameter/length. A compatible frame size ensures that the motor will physically fit into the existing mounting system.
- **Enclosure Type:** The type of enclosure (e.g., ODP, TEFC, TENV) determines the motor's protection against environmental factors like dust, moisture, and hazardous atmospheres. The replacement must offer equivalent or superior protection for the application's environment.
- **Service Factor:** This indicates the motor's ability to handle temporary overloads. A similar or higher service factor is often desirable for applications that experience fluctuating loads.
- **Phase:** Whether the motor is single-phase or three-phase must be matched to the available electrical supply.
- **Insulation Class:** This defines the maximum operating temperature the motor's windings can withstand. Matching or exceeding the insulation class of the original motor is vital for longevity.

Utilizing Manufacturer Databases and Resources

Accessing official Magnetek cross-reference guides or authorized distributor databases is the most reliable method for finding suitable replacements. These resources are specifically designed to

provide accurate and up-to-date information. They often include detailed product specifications and recommended substitution charts. Some manufacturers may also offer online tools or direct support to assist with cross-referencing inquiries. Building a relationship with a reputable supplier who specializes in electric motors can also provide invaluable assistance in navigating complex cross-reference requirements.

Common Magnetek Universal Electric Motor Substitution Scenarios

The Magnetek universal electric motor cross reference is particularly valuable when dealing with common substitution needs, such as replacing older, less energy-efficient models with newer, more efficient ones, or when a specific motor model is no longer in production. These scenarios highlight the practical application of cross-referencing in maintaining operational efficiency and reducing long-term costs.

Replacing Obsolete Magnetek Motor Models

When a specific Magnetek motor model is discontinued, the cross-reference becomes essential. Manufacturers typically provide recommendations for newer models that offer equivalent or improved performance. This ensures that businesses can continue to operate their machinery without having to undertake extensive redesigns. The focus here is on maintaining functional equivalence, ensuring that the new motor integrates seamlessly into the existing mechanical and electrical systems. This process often involves identifying a modern motor with the same horsepower, voltage, RPM, and frame size, while also considering any improvements in efficiency or durability offered by the newer design.

Upgrading to More Energy-Efficient Motors

Beyond simply finding a direct replacement, the Magnetek universal electric motor cross reference can facilitate upgrades to more energy-efficient models. Modern motors often incorporate advancements in design and materials that lead to lower energy consumption. Using the cross-reference, one can identify a contemporary motor that not only meets the original specifications but also offers a higher efficiency rating. This can lead to significant cost savings on electricity bills over the motor's lifespan and contribute to sustainability initiatives. The selection process will emphasize energy efficiency metrics such as NEMA Premium or IE3/IE4 ratings where applicable.

Adapting to Changes in Application Requirements

In some cases, application requirements may evolve, necessitating a motor with slightly different characteristics. The cross-reference can help identify motors that offer a bit more power, a different speed, or an improved enclosure type to suit new operating conditions. This flexibility is a key

benefit, allowing for adaptation without requiring entirely new equipment. For instance, if an application's load has increased, a cross-reference might point to a motor with a higher horsepower rating that still fits the original frame size and electrical supply.

Best Practices for Selecting the Right Magnetek Replacement Motor

Selecting the correct replacement motor using a Magnetek universal electric motor cross reference involves more than just matching numbers. It requires a thorough understanding of the application and a commitment to best practices to ensure long-term reliability and performance. Adhering to these guidelines will minimize the risk of incorrect selections and potential operational problems.

Thoroughly Document Original Motor Specifications

The foundation of any successful cross-reference is accurate documentation of the original motor's specifications. Before consulting any cross-reference guide, take the time to record every detail from the motor's nameplate: horsepower, voltage, amperage, RPM, frame size, enclosure type, service factor, phase, and insulation class. Missing or incorrect information can lead to erroneous cross-references and the selection of an unsuitable motor. Taking photographs of the nameplate can also be a useful backup.

Verify Compatibility with the Driven Equipment

It is crucial to ensure that the replacement motor's output shaft, mounting dimensions, and torque characteristics are compatible with the driven equipment. The driven equipment relies on specific torque and speed from the motor to function correctly. While matching the original motor's RPM is generally the goal, sometimes slight variations can be accommodated, but this needs careful consideration of the driven equipment's tolerance. Always confirm that the shaft diameter, length, and keyway dimensions are correct for the coupling or drive system.

Consider Environmental Conditions and Duty Cycle

The operating environment and the motor's duty cycle (continuous, intermittent, etc.) are critical factors. A motor designed for a clean, dry indoor environment will likely fail prematurely if installed in a dusty, humid, or corrosive industrial setting. Similarly, a motor designed for intermittent duty may overheat if used continuously. The enclosure type and insulation class should be chosen to withstand these conditions. The cross-reference should guide you to motors with appropriate protection ratings and thermal capabilities.

Consult with Experts and Suppliers

When in doubt, always consult with motor manufacturers, authorized distributors, or experienced motor repair professionals. They have access to extensive databases and the technical expertise to interpret cross-reference data and advise on the best replacement options. They can also help identify potential upgrades or solutions that you might not have considered. Never hesitate to ask for clarification or a second opinion, especially for critical applications.

Frequently Asked Questions

What is the primary purpose of a Magnetek universal electric motor cross-reference guide?

The primary purpose of a Magnetek universal electric motor cross-reference guide is to help users identify a suitable Magnetek replacement motor for an existing motor from a different manufacturer, or even a different Magnetek model, based on key specifications.

What are the most important specifications to look for when cross-referencing a Magnetek universal electric motor?

Key specifications include horsepower (HP), voltage, RPM (revolutions per minute), frame size, shaft diameter and length, mounting configuration (e.g., NEMA frame, C-face), and enclosure type (e.g., ODP, TEFC).

Where can I find a reliable Magnetek universal electric motor cross-reference tool online?

Magnetek's official website is the most reliable source for their cross-reference tools. Many authorized distributors also offer cross-reference functionality on their websites, often integrated with their product catalogs.

How do I handle situations where an exact cross-reference isn't available for a Magnetek universal electric motor?

If an exact match isn't found, you'll need to identify a motor with equivalent or superior specifications. Prioritize matching HP, voltage, RPM, and frame size. Consult with Magnetek's technical support or a knowledgeable distributor for guidance on potential alternatives.

What are the common applications for Magnetek universal electric motors that often require cross-referencing?

Magnetek universal electric motors are commonly found in HVAC systems, industrial machinery, pumps, fans, and material handling equipment, all of which may require replacements due to age or failure, necessitating cross-referencing.

Are there any specific considerations when cross-referencing Magnetek universal electric motors for hazardous location applications?

Yes, for hazardous locations (e.g., explosion-proof), you must ensure the replacement motor meets all the same hazardous location certifications (e.g., Class I, Division 1) and T-codes as the original motor. This is critical for safety.

What is the difference between a direct cross-reference and a functional equivalent when using Magnetek guides?

A direct cross-reference typically finds a Magnetek motor with identical or very close specifications. A functional equivalent might have slightly different specifications but will perform the same task adequately in the application, often with minor modifications.

How does motor efficiency play a role in Magnetek universal electric motor cross-referencing?

While not always a primary cross-reference parameter, motor efficiency (e.g., NEMA Premium efficiency) is increasingly important. If possible, cross-referencing to a more efficient motor can lead to energy savings and reduced operating costs.

What information should I have readily available before starting a Magnetek universal electric motor cross-reference search?

Before starting, have the manufacturer's name, model number, serial number, and key specifications (HP, voltage, RPM, frame size, etc.) of the motor you need to replace. Photos of the motor's nameplate and mounting can also be very helpful.

Additional Resources

Here are 9 book titles related to Magnetek universal electric motor cross-referencing, with short descriptions:

1. Universal Motor Applications and Cross-Reference Guides

This book serves as a comprehensive compilation of universal motor specifications and their common applications across various industries. It offers detailed technical data, including voltage, amperage, RPM, and frame sizes, making it an invaluable resource for engineers and technicians. A significant portion of the book is dedicated to providing direct cross-reference tables that help identify equivalent Magnetek motors or suitable replacements from other manufacturers.

2. Electric Motor Equivalency: A Universal Approach

Focusing on the principles of electric motor equivalency, this text explores the technical parameters that determine interchangeability between different motor models. It delves into the nuances of motor design and performance characteristics, explaining how to match motors based on essential

electrical and mechanical specifications. The book includes extensive sections on universal motor cross-referencing, aiding users in finding compatible Magnetek alternatives.

- 3. Troubleshooting and Replacing Universal Motors with Magnetek Solutions
 This practical guide is designed for maintenance professionals and repair technicians who frequently encounter universal motor issues. It offers diagnostic techniques for identifying common motor failures and provides step-by-step instructions for replacement. A key feature is its detailed cross-reference section, specifically highlighting how to leverage Magnetek's product line to find optimal replacements for worn-out universal motors from various brands.
- 4. Magnetek Universal Motor Catalog and Cross-Reference Directory
 As a dedicated catalog from Magnetek, this book presents their full range of universal electric motors. It includes detailed product descriptions, technical schematics, and performance charts for each motor model. The primary utility lies in its comprehensive cross-reference directory, which assists users in identifying the precise Magnetek motor that corresponds to specifications from other manufacturers' universal motors.
- 5. Industrial Motor Identification and Replacement Strategies
 This broad industrial text covers the identification and selection of various electric motors used in manufacturing and industrial settings. It introduces standardized naming conventions and classification systems for motors, including universal types. The book emphasizes efficient replacement strategies, featuring extensive cross-reference data and analysis to help users easily find Magnetek universal motor equivalents for existing installations.
- 6. The Universal Electric Motor Handbook: Cross-Reference Edition
 This comprehensive handbook covers the fundamental principles, design, and operation of universal electric motors. It is an essential reference for anyone working with these versatile motors, offering in-depth explanations of their functionality. The "Cross-Reference Edition" specifically dedicates significant chapters to helping users navigate the complex world of motor replacements, with a strong focus on cross-referencing older or competitor universal motors to suitable Magnetek models.
- 7. Interchangeable Electric Motor Components and Equivalents
 This book delves into the components and design elements that contribute to electric motor interchangeability. It analyzes shared specifications and performance metrics across different manufacturers, providing a framework for understanding motor equivalency. The text offers a detailed cross-reference section that specifically assists in identifying Magnetek universal motor replacements for a wide array of other brands, simplifying the procurement process.
- 8. Magnetek Motor Specification Guide: Universal Motor Cross-Reference Charts
 This specialized guide focuses on the detailed specifications of Magnetek's universal motor offerings. It provides in-depth technical data for each motor, enabling users to understand their capabilities and limitations. The book's core strength is its extensive collection of cross-reference charts, which meticulously link competitor universal motor part numbers and specifications to their closest Magnetek equivalents, ensuring seamless integration and replacement.
- 9. Electric Motor Application and Selection: Universal and Beyond
 This text explores the diverse applications of electric motors across a multitude of industries, with a particular emphasis on universal motors. It guides readers through the process of selecting the most appropriate motor for specific tasks, considering factors like power requirements, duty cycles, and environmental conditions. The book includes a dedicated section on cross-referencing, which helps users efficiently identify Magnetek universal motor solutions when replacing motors from other

manufacturers.

Magnetek Universal Electric Motor Cross Reference

Find other PDF articles:

https://a.comtex-nj.com/wwu18/Book?trackid=InM57-3382&title=toyota-certification-answers.pdf

Magnetek Universal Electric Motor Cross Reference: Your Ultimate Guide to Finding the Right Replacement

Are you struggling to find the exact replacement motor for your Magnetek equipment? Hours spent searching online, endless cross-referencing charts that lead nowhere, and the frustration of downtime – sound familiar? Finding the correct Magnetek universal electric motor can be a complex and time-consuming process, leading to costly delays and potential equipment damage. This ebook cuts through the confusion, providing you with the precise information you need to quickly and confidently identify the perfect replacement.

This comprehensive guide, Magnetek Motor Matchmaker, will help you:

Eliminate Guesswork: Say goodbye to trial-and-error replacements.

Save Time and Money: Quickly identify the correct motor, minimizing downtime and unnecessary expenses.

Prevent Equipment Damage: Ensure compatibility and avoid costly repairs.

Understand Magnetek Motor Specifications: Learn to decipher model numbers and critical parameters.

Contents:

Introduction: Understanding Magnetek Motors and the Importance of Accurate Cross-Referencing Chapter 1: Deciphering Magnetek Motor Model Numbers: Breaking down the code to understand motor specifications.

Chapter 2: Utilizing Magnetek's Resources: Navigating official documentation and online databases.

Chapter 3: Cross-Referencing Techniques: Practical strategies for finding equivalent motors from different manufacturers.

Chapter 4: Key Motor Specifications and Their Importance: Understanding critical parameters like voltage, horsepower, speed, and frame size.

Chapter 5: Troubleshooting Common Magnetek Motor Issues: Identifying problems and choosing the right replacement.

Chapter 6: Case Studies: Real-world examples demonstrating successful motor cross-referencing.

Chapter 7: Working with Distributors and Suppliers: Tips for effective communication and sourcing

replacement motors.

Conclusion: Mastering Magnetek Motor Cross-Referencing for Efficient Maintenance

Magnetek Universal Electric Motor Cross Reference: A Comprehensive Guide

Introduction: Understanding Magnetek Motors and the Importance of Accurate Cross-Referencing

Magnetek is a leading manufacturer of electric motors used in a wide range of industrial applications, including material handling, automated systems, and industrial machinery. Finding the correct replacement motor when a Magnetek motor fails is crucial for minimizing downtime, preventing equipment damage, and ensuring operational efficiency. Incorrect replacements can lead to malfunctions, safety hazards, and costly repairs. This guide provides a systematic approach to effectively cross-referencing Magnetek universal electric motors, allowing you to quickly and confidently select the appropriate replacement. This involves understanding Magnetek's model numbering system, key motor specifications, and leveraging available resources.

Chapter 1: Deciphering Magnetek Motor Model Numbers

Magnetek motor model numbers are not arbitrary strings of characters; they contain valuable information about the motor's specifications. Understanding this code is the first step towards successful cross-referencing. A typical Magnetek model number might look like this: "AM100-48-1725-120". Let's break down what each part signifies:

AM: Indicates the motor series or type (e.g., AC induction motor).

100: Often refers to the frame size, horsepower, or torque rating.

48: Could represent the voltage (48 volts DC).

1725: Likely indicates the motor's speed (1725 RPM).

120: Might represent a specific design code, mounting configuration, or other internal specifications.

Different Magnetek motor lines may have variations in their model number structure. Refer to Magnetek's official documentation or contact their support for clarification on specific models. This often includes detailed specification sheets that clarify the meaning of each segment within the model number. Learning to interpret these codes is paramount to quickly understanding the motor's capabilities and finding suitable alternatives.

Chapter 2: Utilizing Magnetek's Resources

Magnetek offers various resources to aid in motor identification and cross-referencing. These include:

Official Website: Their website usually contains catalogs, specification sheets, and potentially cross-reference guides for their products.

Online Databases: Magnetek may use online databases where you can input your motor model number or key specifications to find replacement parts.

Customer Support: Directly contacting Magnetek's customer support is always a valuable option. Their technical experts can help decipher model numbers and provide recommendations for equivalent replacements.

Chapter 3: Cross-Referencing Techniques

When an exact Magnetek replacement is unavailable or impractical, cross-referencing techniques become crucial. This involves finding functionally equivalent motors from other manufacturers. Key considerations include:

Matching Key Specifications: Focus on matching voltage, horsepower (kW), speed (RPM), mounting dimensions (frame size), and torque. Even small discrepancies can impact performance and lifespan. Using Online Cross-Reference Tools: Many websites and software applications offer cross-referencing capabilities, allowing you to search for equivalent motors from various manufacturers based on specified parameters.

Consulting with Motor Specialists: Experts in motor selection and application can provide valuable guidance in finding suitable substitutes, considering factors often overlooked by less experienced users.

Chapter 4: Key Motor Specifications and Their Importance

Several critical specifications must be matched precisely when cross-referencing Magnetek motors:

Voltage (V): The electrical voltage required to operate the motor. A mismatch can damage the motor or associated equipment.

Horsepower (HP) or Kilowatts (kW): The motor's power output. Using a motor with insufficient horsepower will lead to overheating and failure.

Speed (RPM): The rotational speed of the motor shaft. An incorrect speed can affect the performance of the driven machinery.

Frame Size: The physical dimensions of the motor, including mounting pattern and shaft length. This

ensures proper fit and alignment within the equipment.

Torque: The rotational force produced by the motor. Insufficient torque will cause the motor to stall under load.

Duty Cycle: Describes the motor's operational workload. Choosing a motor with an insufficient duty cycle can cause premature failure.

Efficiency: Higher-efficiency motors will lead to energy savings.

Chapter 5: Troubleshooting Common Magnetek Motor Issues

Before attempting a cross-reference, diagnosing the cause of motor failure is crucial. Common issues include:

Overheating: Indicates potential problems with overloading, inadequate ventilation, or internal motor faults.

Bearing Failure: Leads to noise, vibration, and eventual motor seizure.

Winding Failures: Causes reduced performance or complete motor failure.

Power Supply Issues: Inconsistent or incorrect voltage supply will damage the motor.

Chapter 6: Case Studies

This section will detail several real-world examples illustrating successful Magnetek motor cross-referencing strategies, showcasing the practical application of the techniques discussed in previous chapters. Each case study would illustrate the challenges encountered, the steps taken to identify a suitable replacement, and the outcome.

Chapter 7: Working with Distributors and Suppliers

This chapter provides guidance on effectively communicating your needs to motor distributors and suppliers, ensuring you receive the correct replacement. This includes preparing a concise and accurate motor specification sheet, clearly stating the replacement needs, and understanding the lead times.

Conclusion: Mastering Magnetek Motor Cross-Referencing for Efficient Maintenance

By understanding Magnetek's motor model numbers, utilizing available resources, mastering cross-referencing techniques, and carefully considering key motor specifications, you can efficiently replace Magnetek motors and minimize downtime. This guide empowers you to make informed decisions, preventing costly mistakes and ensuring smooth operation.

FAQs:

- 1. Where can I find Magnetek motor specifications? Magnetek's website, distributor catalogs, and potentially online databases.
- 2. What happens if I use an incorrect replacement motor? Possible malfunctions, safety hazards, premature failure, and costly repairs.
- 3. How important is matching the frame size? Essential for proper fit and alignment within the equipment.
- 4. Can I use a motor with slightly higher horsepower? Generally acceptable, but ensure it's within the equipment's load capacity.
- 5. What if I can't find an exact replacement? Utilize cross-referencing techniques to find a functionally equivalent motor.
- 6. How do I interpret Magnetek's model number system? The guide provides a breakdown of the typical code structure.
- 7. What are some common causes of Magnetek motor failure? Overheating, bearing failure, winding failures, and power supply issues.
- 8. What resources does Magnetek provide for motor identification? Official website, online databases, and customer support.
- 9. Is it always necessary to replace a motor with an identical model? No, finding a functionally equivalent motor from another manufacturer is often acceptable.

Related Articles:

- 1. Understanding AC Induction Motor Principles: Explains the basics of AC induction motors, crucial for understanding Magnetek motors.
- 2. Guide to Electric Motor Frame Sizes: Details the different frame sizes and their implications for compatibility.
- 3. Troubleshooting Common Electric Motor Problems: A broader guide addressing issues found in various electric motor types.
- 4. How to Choose the Right Electric Motor for Your Application: Provides guidance on selecting motors based on specific application needs.
- 5. The Importance of Motor Efficiency in Industrial Applications: Focuses on energy savings and the environmental impact of motor selection.
- 6. Safety Considerations When Working with Electric Motors: Details crucial safety protocols when handling and maintaining motors.
- 7. A Comparison of Different Electric Motor Types: Compares various motor types, such as AC

induction, DC, and servo motors.

- 8. Magnetek Motor Maintenance and Preventative Measures: Provides tips on extending motor lifespan.
- 9. Working with Industrial Motor Distributors and Suppliers: Offers strategies for finding reputable suppliers and navigating the procurement process.

magnetek universal electric motor cross reference: Electrical Construction and Maintenance , 1987

magnetek universal electric motor cross reference: PURCHASING BUYING QUALITY ${\bf 1991}$, ${\bf 1991}$

magnetek universal electric motor cross reference: Machine Design , 1987-10 magnetek universal electric motor cross reference: Regional Industrial Buying Guide , 2000 magnetek universal electric motor cross reference: Control Engineering , 1987 Instrumentation and automatic control systems.

magnetek universal electric motor cross reference: Design News, 1987

magnetek universal electric motor cross reference: Index of Patents Issued from the United States Patent and Trademark Office, 1991

magnetek universal electric motor cross reference: ASHRAE Journal, 1996
magnetek universal electric motor cross reference: The Capacitor Handbook Cletus J.
Kaiser, 2012-12-06 A long and varied experience in many areas of electronic circuit design has convinced me that capacitors are the most misunderstood and misused electronic component. Thi

convinced me that capacitors are the most misunderstood and misused electronic component. This book provides practical guidance in the understanding, construction, use, and application of capacitors. Theory, combined with circuit application advice, will help to under stand what goes on in each component and in the final design. All chapters are arranged with the theory of the dielectric type discussed first, followed by circuit application information. With all chapters arranged in the same manner, this will make reading and using this book for reference easier. A practical glossary of terms used in the capacitor industry is included. The first chapter covers basic information that applies to all types of capacitors. Each following chapter addresses a different capacitor dielectric. This book could have been titled: 'Everything You Wanted To Know About Capacitors, But Were Afraid To Ask ... 'ix Preface THE CAPACITOR HANDBOOK Chapter 1 Fundamentals For All Capacitors For all practical purposes, consider only the parallel plate capacitor as illustrated in Fig. 1.1-two conductors or electrodes separated by a dielectric material of uniform thickness. The conductors can be any material that will conduct electricity easily. The dielectric must be a poor conductor-an insulator. Conductor (Electrode) Dielectric ,;~;...-~ Conductor (Electrode) 1..----Wire to Outside World Fig. 1.1 The Parallel-Plate Capacitor Fig. 1.2 illustrates the symbol for a capacitor used in schematic diagrams of electronic circuits. The symbol resembles a parallel-plate model.

magnetek universal electric motor cross reference: Energy-efficient Motor Systems Steven Nadel, 1991 Motors use more than half of all electricity. This book outlines an approach for increasing motor and motor system efficiency through high-efficiency motors, optimized controls, improved component sizing and repair, better transmission hardware, and more comprehensive monitoring and maintenance. In addition to explaining technical opportunities in language understandable to non-engineers, the book reviews what is known about the existing motor stock and its use, chronicles experience to date with drive power programs and policies, and offers recommendations for future efforts. Full application of the measures described can cut U.S. electricity demand by up to 20 percent, save motor users and utilities billions of dollars, reduce pollutant emissions, and enhance productivity. The book was written by an interdisciplinary team of engineers, energy analysts, and program planners who collectively have over 50 years of experience in the energy efficiency field.

magnetek universal electric motor cross reference: Consulting-specifying Engineer, 1994

magnetek universal electric motor cross reference: American Export Register, 1998 magnetek universal electric motor cross reference: Thomas Register of American Manufacturers and Thomas Register Catalog File, 2002 Vols. for 1970-71 includes manufacturers' catalogs.

magnetek universal electric motor cross reference: THOMAS REGIONAL INDUSTRIAL BUYING GUIDE NORTHERN CALIFORNIA 2004,

magnetek universal electric motor cross reference: Purchasing, 1988 magnetek universal electric motor cross reference: Thomas Regional Industrial Buying Guide, 2002

magnetek universal electric motor cross reference: Electric Machinery and Transformers Bhag S. Guru, Hüseyin R. Hızıroğlu, 1995 For this revision of their bestselling junior- and senior-level text, Guru & Hiziroglu have incorporated eleven years of cutting-edge developments in the field since Electric Machinery & Transformers was first published. Completely re-written, the new Second Edition also incorporates suggestions from students and instructors who have used the First Edition, making it the best text available for junior- and senior-level courses in electric machines. The new edition features a wealth of new and improved problems and examples, designed to complement the authors' overall goal of encouraging intuitive reasoning rather than rote memorization of material. Chapter 3, which presents the conversion of energy, now includes: analysis of magnetically coupled coils, induced emf in a coil rotating in a uniform magnetic field, induced emf in a coil rotating in a time-varying magnetic field, and the concept of the revolving field. All problems and examples have been rigorously tested using Mathcad.

magnetek universal electric motor cross reference: Building Operating Management, 1994 magnetek universal electric motor cross reference: List of Materials Acceptable for Use on Systems of RUS Electrification Borrowers. 2002

magnetek universal electric motor cross reference: MacRae's Blue Book, 1990 magnetek universal electric motor cross reference: Official List of Section 13(f) Securities, magnetek universal electric motor cross reference: U.S. Industrial Directory, 1989 magnetek universal electric motor cross reference: Directory of Corporate Affiliations, 1993 Directory is indexed by name (parent and subsidiary), geographic location, Standard Industrial Classification (SIC) Code, and corporate responsibility.

magnetek universal electric motor cross reference: Dun's Directory of Service Companies , 1994

magnetek universal electric motor cross reference: *Moody's Industrial Manual* , 1997 Covering New York, American & regional stock exchanges & international companies.

magnetek universal electric motor cross reference: Power Supplies for LED Driving Steve Winder, 2016-12-28 Power Supplies for LED Driving, Second Edition explores the wide use of light-emitting diodes due to their efficient use of power. The applications for power LEDs include traffic lights, street lamps, automotive lighting, architectural lights, theatre lighting, household light replacements, signage lighting (replacing neon strip lights and fluorescent tubes), LCD display backlighting, and many more. Powering (driving) these LED's is not always simple. Linear driving is inefficient and generates far too much heat. With a switching supply, the main issues are EMI, efficiency, and of course cost. This book covers the design trade-offs involved in LED driving applications, from low-power, to UB-LEDs and beyond. - Provides a practical, hands-on approach to power supply design for LED drivers - Contains detailed examples of what works throughout the design process - Presents commentary on how the calculated component value compares with the actual value used, including a description of why the choice was made

magnetek universal electric motor cross reference: Electrical Measurement, Signal Processing, and Displays John G. Webster, 2003-07-15 The CRC Principles and Applications in Engineering series is a library of convenient, economical references sharply focused on particular engineering topics and subspecialties. Each volume in the series comprises chapters carefully selected from CRC's bestselling handbooks, logically organized for optimum convenience, and

thoughtfully priced to fit

magnetek universal electric motor cross reference: National Biennial RCRA Hazardous Waste Report (based on 1989 Data)., 1993

 $magnetek\ universal\ electric\ motor\ cross\ reference:\ Iron\ and\ Steel\ Engineer\ ,\ 1993\ Contains$ the proceedings of the Association.

magnetek universal electric motor cross reference: Planning and Installing Photovoltaic Systems Deutsche Gesellschaft für Sonnenenergie, 2008 Growth in photovoltaic (PV) manufacturing worldwide continues to increase. In parallel, appropriate standards and certification schemes are being developed. During this period, clear guidance is crucial for integrating this technology into working practices of professionals in the building sector. This bestselling guide has become the essential tool for any installer, engineer and architect, offering guidance, and detailing every subject necessary for successful project implementation, from the technical design to the legal and market issues of PV installation. Beginning with resource assessment and an outline of the core components, this guide comprehensively covers system design, economic analysis, installation, operation and maintenance of PV systems. The book includes a free CD-ROM which contains essential software and additional material. The second edition has been fully updated to reflect the state-of-the-art in technology and concepts and includes: a new chapters on marketing and the history of PV; new information on the photovoltaic market; new material on lightning protection; a new section on building integrated systems; and new graphics, data, photos and software.

magnetek universal electric motor cross reference: Power Transmission Design Handbook , 1995

magnetek universal electric motor cross reference: MacRae's Industrial Directory , 1997 magnetek universal electric motor cross reference: Predicasts Technology Update , 1991 magnetek universal electric motor cross reference: Greater Allegheny Regional Industrial Purchasing Guide , 1986

 $\textbf{magnetek universal electric motor cross reference:} \ \underline{Foundry \ Management \ \& \ Technology} \ , \\ 1987$

magnetek universal electric motor cross reference: European Electronics Directory 1994 C.G. Wedgwood, 2013-10-22 Companion volume to Components and Sub-Assemblies
Directory, providing access to 8000 manufacturers, agents and representatives of electronics
systems and equipment. Entries include names of key managers, addresses, fax/telephone numbers, and pocket descriptions of manufacturing and sales programmes. There is also a product index to track the companies involved in any given business lines.

magnetek universal electric motor cross reference: Modern Refrigeration and Air Conditioning Andrew Daniel Althouse, C. H. Turnquist, A. F. Bracciano, 1997-09 Modern Refrigeration and Air Conditioning is the leader in the refrigeration and air conditioning field! This comprehensive text teaches fundamental principles and service techniques. The text tells and shows how to diagnose and remedy HVAC problems. It provides an excellent blend of theory with job-qualifying skills. This text contains all the most recent information and advances necessary to prepare the technician for today's world. Modern Refrigeration and Air Conditioning provides the foundation on which a solid and thorough knowledge of refrigeration and air conditioning may be based. Students, as well as practicing technicians, will benefit from the topics covered in this book. This edition includes up-to-date information on refrigerant recovery, recycling, and reclaiming. --Chapters are divided into smaller self-standing modules for ease of use. -- Covers the operation of systems and their specific components. -- Progresses from basic to advanced principles using understandable terminology. -- Current information on the EPA rules, regulations, and guidelines. --Identification of the various types of new refrigerants such as 134a and 123, and information on equipment needed for refrigerant recovery, recycling, and reclaiming. -- Up-to-date methods of sizing, installing, and maintaining refrigeration and air conditioning systems. -- Proper procedures for using troubleshooting charts. -- Emphasizes procedures that will help the service technician become more efficient. -- Uses both US Conventional and SI Metric units. -- Chapters include Module Title(s), Key Terms, Objectives, Review of Safety (where applicable), and Test Your Knowledge questions.

magnetek universal electric motor cross reference: Thomas Register, 2005 magnetek universal electric motor cross reference: Solar Power in Building Design (GreenSource) Peter Gevorkian, 2007-10-05 Design, Implement, and Audit the Most Energy-Efficient, Cost-Effective Solar Power Systems for Any Type of Building! Solar Power in Building Design is a complete guide to designing, implementing, and auditing energy-efficient, cost-effective solar power systems for residential, commercial, and industrial buildings. From basic theory through project planning, cost estimating, and manufacturing methods, this vital resource offers you everything needed for solar power design success. Filled with case studies and illustrations, this state-of-the-art design tool covers new solar technologies...design implementation techniques...energy conservation...the economics of solar power systems...passive solar heating power...and more. Solar Power in Building Design features: Step-by-step instructions for designing, implementing, and auditing solar power systems Expert guidance on using solar power in any type of building-from basic theory through project planning, cost estimating, and manufacturing Complete details on Leadership in Energy and Environmental Design (LEED), plus rebate procedures and forms Inside This Cutting-Edge Solar Power Toolkit • Solar power physics and technology • Practical guide to solar power design • Solar power design implementation • Energy conservation • Leadership in Energy and Environmental Design (LEED) • Sustainable energy rebate • Economics of solar power systems • Passive solar heating power

Back to Home: https://a.comtex-nj.com